Jumat, 21 Oktober 2016

SEJARAH PERKEMBANGAN ATOM DAN TENAGA NUKLIR



                 A.    SEJARAH PERKEMBANGAN ATOM
Konsep atom pertama kali dikemukakan oleh Demokritos yang tidak didukung oleh eksperimen yang meyakinkan, sehingga tidak dapat diterima oleh beberapa ahli ilmu pengetahuan dan filsafat. Pengembangan konsep atom-atom secara ilmiah dimulai oleh John Dalton (1805), kemudian dilanjutkan oleh Thomson (1897), Rutherford (1911) dan disempurnakan oleh Bohr (1914). Pada zaman Yunani terdapat dua paham mengenai susunan Zat. Leukippos dan Demokritus berpendapat, bahwa suatu zat tidak dapat terus menerus dibelah tanpa batas; ada bagian paling kecil yang tidak dapat dibelah lagi, yang mereka sebut “atom” (“atomos” berati tidak dapat dibelah). Pendapat kedua ialah pendapat Aristoteles, yang menyatakan bahwa zat dapat dibelah terus menerus tanpa batas. Paham Aristoteles ini ternyata merupakan pendapat umum dan dapat bertahan berabad-abad.
Pada zaman Renaissance pendapat tentang adanya atom sebagai suatu bagian terkecil dari suatu zat, dihidupkan kembali oleh Gassendi pada tahun 1592-1655. Sejak saat itu, banyak pendapat tentang atom yang dikemukakan oleh para ahli dan ilmuan dari berbagai belahan dunia. Akan tetapi, hal ini baru dapat di pertanggungjawabkan oleh seorang Ilmuan bernama John Dalton pada tahun 1808, sekitar 4 abad setelah teori atom sebagi bagian terkecil dalam suatu zat didengungkan.
Teori ini terus berlanjut dan kelemahan dari setiap teoripun ditemukan. Satu persatu teori tentang ilmuan gugur karena ada hal yang tak mampu mereka jelaskan mengenai apa yang mereka kemukakan. Namun, Dalton telah membuka jalan untuk menemukan kesempurnaan sebuah atom. Ada beberapa nama yang terkenal dalam sejarah perkembangan atom dimana orang-orang ini kemudian menyempurnakan teori-teori yang telah ada. Berikut adalah beberapa uraian singkat mengenai teori atom yang pernah dikemukakan oleh parah Ilmuan.
Reaktor nuklir yang pertama kali membangkitkan listrik adalah stasiun pembangkit percobaan EBR-I pada 20 Desember 1951 di dekat Arco, Idaho, Amerika Serikat. Pada 27 Juni 1954, PLTN pertama dunia yang menghasilkan listrik untuk jaringan listrik (power grid) mulai beroperasi di Obninsk, Uni Soviet [1]. PLTN skala komersiil pertama adalah Calder Hall di Inggris yang dibuka pada 17 Oktober 1956 [2].

 Ciri-ciri model dan kelemahan atom :

1. Model atom Dalton
ciri-ciri :
- Atom digambarkan sebagai bola pejal yang sangat kecil.
- Atom merupakan partikel terkecil yang tidak dapat dipecah lagi.
- Atom suatu unsur sama memiliki sifat yang sama, sedangkan atom unsur berbeda, berlainan dalam massa dan sifatnya.
- Senyawa terbentuk jika atom bergabung satu sama lain.
- Reaksi kimia hanyalah reorganisasi dari atom-atom, sehingga tidak ada atom yang berubah akibat reaksi kimia.
kelemahan :
- Atom bukanlah sesuatu yang tak terbagi, melainkan terdiri dari partikel subatom
- Atom-atom dari unsur yang sama, dapat mempunyai massa yang berbeda ( disebut Isotop )
- Atom dari suatu unsur dapat diubah menjadi atom unsur lain melalui Reaksi Nuklir
- Beberapa unsur tidak terdiri dari atom-atom melainkan molekul-molekul

model atom dalton

2. Model atom Thomson
ciri-ciri : 
- Atom terdiri dari materi bermuatan positif dan di dalamnya tersebar elektron (bagaikan kismis dalam roti kismis)
- Atom bersifat netral, yaitu muatan positif dan muatan negatif jumlahnya sama
kelemahan :
 - fisika klasik menyatakan bahwa apabila terdapat suatu partikel bermuatan yang bergerak menurut lintasan lengkung, maka energinya akan hlang dalam bentuk radiasi.

model atom thomson

3. Model atom Rutherford
ciri-ciri :
- Rutherford menemukan bukti bahwa dalam atom terdapat inti atom yang bermuatan positif, berukuran lebih kecil daripada ukuran atom tetapi massa atom hampir seluruhnya berasal dari massa intinya.
- Atom terdiri dari inti atom yang bermuatan positif dan berada pada pusat atom serta elektron bergerak melintasi inti (seperti planet dalam tata surya).
- Atom bersifat netral.
- Jari-jari inti atom dan jari-jari atom sudah dapat ditentukan.
kelemahan :
- Ketidakmampuan untuk menjelaskan mengapa elektron tidak jatuh ke inti atom akibat gaya tarik elektrostatis inti terhadap elektron.
- Menurut teori Maxwell, jika elektron sebagai partikel bermuatan mengitari inti yang memiliki muatan yang berlawanan maka lintasannya akan berbentuk spiral dan akan kehilangan tenaga/energi dalam bentuk radiasi sehingga akhirnya jatuh ke inti.

model atom rutherford

4. Model atom Niels Bohr
ciri-ciri : 
- Elektron mengorbit pada tingkat energi tertentu yang disebut kulit
- Tiap elektron mempunyai energi tertentu yang cocok dengan tingkat energi kulit
- Dalam keadaan stasioner, elektron tidak melepas dan menyerap energi
- Elektron dapat berpindah posisi dari tingkat energi tinggi menuju tingkat energi rendah dan sebaliknya dengan menyerap dan melepas energi
kelemahan :
- Hanya dapat menerangkan spektrum dari atom atau ion yang mengandung satu elektron dan tidak sesuai dengan spektrum atom atau ion yang berelektron banyak.
- Tidak mampu menerangkan bahwa atom dapat membentuk molekul melalui ikatan kimia


model atom niels bohr

 5. Model atom Modern
ciri-ciri :
- Atom terdiri dari inti atom yang mengandung proton dan neutron sedangkan elektron-elektron bergerak mengitari inti atom dan berada pada orbital-orbital tertentu yang membentuk kulit atom.
- Orbital yaitu daerah 3 dimensi di sekitar inti dimana elektron dengan energi tertentu dapat ditemukan dengan kemungkinan terbesar.
- Kedudukan elektron pada orbital-orbitalnya dinyatakan dengan bilangan kuantum.

model atom modern


B. Pembangkit Listrik Tenaga Nuklir (PLTN) adalah stasiun pembangkit listrik thermal di mana panas yang dihasilkan diperoleh dari satu atau lebih reaktor nuklir pembangkit listrik.
PLTN termasuk dalam pembangkit daya base load, yang dapat bekerja dengan baik ketika daya keluarannya konstan (meskipun boiling water reactor dapat turun hingga setengah dayanya ketika malam hari). Daya yang dibangkitkan per unit pembangkit berkisar dari 40 MWe hingga 1000 MWe. Unit baru yang sedang dibangun pada tahun 2005 mempunyai daya 600-1200 MWe.
Hingga saat ini, terdapat 442 PLTN berlisensi di dunia [1] dengan 441 diantaranya beroperasi di 31 negara yang berbeda. Keseluruhan reaktor tersebut menyuplai 17% daya listrik dunia.

Sejarah

Reaktor nuklir yang pertama kali membangkitkan listrik adalah stasiun pembangkit percobaan EBR-I pada 20 Desember 1951 di dekat Arco, Idaho, Amerika Serikat. Pada 27 Juni 1954, PLTN pertama dunia yang menghasilkan listrik untuk jaringan listrik (power grid) mulai beroperasi di Obninsk, Uni Soviet [1]. PLTN skala komersiil pertama adalah Calder Hall di Inggris yang dibuka pada 17 Oktober 1956 [2].
Untuk informasi sejarah lebih lanjut, lihat reaktor nuklir dan daya nuklir.

Jenis-jenis PLTN

 

Pressurized Water Reactor untuk kapal laut. Reaktor ini menggunakan air laut sebagai kondenser pendingin reaktor.
                                                     
                                                          Diagram reaktor kapal selam


                                                        Diagram reaktor kapal selam

                                                    Pressurizer Reactor

Steam generator
PLTN dikelompokkan berdasarkan jenis reaktor yang digunakan. Tetapi ada juga PLTN yang menerapkan unit-unit independen, dan hal ini bisa menggunakan jenis reaktor yang berbeda. Sebagai tambahan, beberapa jenis reaktor berikut ini, pada masa depan diharapkan mempunyai sistem keamanan pasif.

Reaktor Fisi

Reaktor daya fisi membangkitkan panas melalui reaksi fisi nuklir dari isotop fissil uranium dan plutonium.
Selanjutnya reaktor daya fissi dikelompokkan lagi menjadi:
  • Reaktor thermal menggunakan moderator neutron untuk melambatkan atau me-moderate neutron sehingga mereka dapat menghasilkan reaksi fissi selanjutnya. Neutron yang dihasilkan dari reaksi fissi mempunyai energi yang tinggi atau dalam keadaan cepat, dan harus diturunkan energinya atau dilambatkan (dibuat thermal) oleh moderator sehingga dapat menjamin kelangsungan reaksi berantai. Hal ini berkaitan dengan jenis bahan bakar yang digunakan reaktor thermal yang lebih memilih neutron lambat ketimbang neutron cepat untuk melakukan reaksi fissi.
  • Reaktor cepat menjaga kesinambungan reaksi berantai tanpa memerlukan moderator neutron. Karena reaktor cepat menggunkan jenis bahan bakar yang berbeda dengan reaktor thermal, neutron yang dihasilkan di reaktor cepat tidak perlu dilambatkan guna menjamin reaksi fissi tetap berlangsung. Boleh dikatakan, bahwa reaktor thermal menggunakan neutron thermal dan reaktor cepat menggunakan neutron cepat dalam proses reaksi fissi masing-masing.
  • Reaktor subkritis menggunakan sumber neutron luar ketimbang menggunakan reaksi berantai untuk menghasilkan reaksi fissi. Hingga 2004 hal ini hanya berupa konsep teori saja, dan tidak ada purwarupa yang diusulkan atau dibangun untuk menghasilkan listrik, meskipun beberapa laboratorium mendemonstrasikan dan beberapa uji kelayakan sudah dilaksanakan.

Reaktor thermal

Reaktor cepat

Meski reaktor nuklir generasi awal berjenis reaktor cepat, tetapi perkembangan reaktor nuklir jenis ini kalah dibandingkan dengan reaktor thermal.
Keuntungan reaktor cepat diantaranya adalah siklus bahan bakar nuklir yang dimilikinya dapat menggunakan semua uranium yang terdapat dalam urainum alam, dan juga dapat mentransmutasikan radioisotop yang tergantung di dalam limbahnya menjadi material luruh cepat. Dengan alasan ini, sebenarnya reaktor cepat secara inheren lebih menjamin kelangsungan ketersedian energi ketimbang reaktor thermal. Lihat juga reaktor fast breeder. Karena sebagian besar reaktor cepat digunakan untuk menghasilkan plutonium, maka reaktor jenis ini terkait erat dengan proliferasi nuklir.
Lebih dari 20 purwarupa (prototype) reaktor cepat sudah dibangun di Amerika Serikat, Inggris, Uni Sovyet, Perancis, Jerman, Jepang, India, dan hingga 2004 1 unit reaktor sedang dibangun di China. Berikut beberapa reaktor cepat di dunia:
(Daya listrik yang ditampilkan adalah daya listrik maksimum, tanggal yang ditampilkan adalah tanggal ketika reaktor mencapai kritis pertama kali, dan ketika reaktor kritis untuk teakhir kali bila reaktor tersebut sudah di dekomisi (decommissioned).

Reaktor Fusi

Artikel utama: daya fusi
Fusi nuklir menawarkan kemungkinan pelepasan energi yang besar dengan hanya sedikit limbah radioaktif yang dihasilkan serta dengan tingkat keamanan yang lebih baik. Namun, saat ini masih terdapat kendal-kendala bidang keilmuan, teknik dan ekonomi yang menghambat penggunaan energi fusi guna pembangkitan listrik. Hal ini masih menjadi bidang penelitian aktif dengan skala besar seperti dapat dilihat di JET, ITER, dan Z machine.

Keuntungan dan kekurangan

Keuntungan PLTN dibandingkan dengan pembangkit daya utama lainnya adalah:
  • Tidak menghasilkan emisi gas rumah kaca (selama operasi normal) - gas rumah kaca hanya dikeluarkan ketika Generator Diesel Darurat dinyalakan dan hanya sedikit menghasilkan gas)
  • Tidak mencemari udara - tidak menghasilkan gas-gas berbahaya sepert karbon monoksida, sulfur dioksida, aerosol, mercury, nitrogen oksida, partikulate atau asap fotokimia
  • Sedikit menghasilkan limbah padat (selama operasi normal)
  • Biaya bahan bakar rendah - hanya sedikit bahan bakar yang diperlukan
  • Ketersedian bahan bakar yang melimpah - sekali lagi, karena sangat sedikit bahan bakar yang diperlukan
  • Baterai nuklir - (lihat SSTAR)
Berikut ini berberapa hal yang menjadi kekurangan PLTN:
  • Risiko kecelakaan nuklir - kecelakaan nuklir terbesar adalah kecelakaan Chernobyl (yang tidak mempunyai containment building)
  • Limbah nuklir - limbah radioaktif tingkat tinggi yang dihasilkan dapat bertahan hingga ribuan tahun. AS siap menampung limbah ex PLTN dan Reaktor Riset. Limbah tidak harus disimpan di negara pemilik PLTN dan Reaktor Riset. Untuk limbah dari industri pengguna zat radioaktif, bisa diolah di Instalasi Pengolahan Limbah Zat Radioaktif, misal yang dimiliki oleh BATAN Serpong.

Perkembangan generasi PLTN


 

Range of possible CANDU fuel cycles: CANDU reactors can accept a variety of fuel types, including the used fuel from light-water reactors
Sejak PLTN komersial pertama dikembangkan pada tahun 50-an hingga saat ini, generasi PLTN mengalami perkembangan yang cukup pesat.

PLTN Generasi I

PLTN generasi pertama dikembangkan pada rentang waktu tahun 50-an hingga tahun 60-an. PLTN generasi pertama ini merupakan prototipe awal dari reaktor pembangkit daya yang bertujuan untuk membuktikan bahwa energi nuklir dapat dimanfaatkan dengan baik untuk tujuan damai. Contoh PLTN generasi pertama ini adalah Shippingport (tipe PWR), Dresden (tipe BWR), Fermi I (tipe FBR) dan Magnox (tipe GCR).

PLTN Generasi II

PLTN generasi kedua dikembangkan setelah tahun 70-an, PLTN ini merupakan suatu pedoman klasifikasi desain dari reaktor nuklir. PLTN generasi II dijadikan sebagai reaktor daya komersial acuan dalam pembangunan PLTN hingga akhir tahun 90-an. Prototipe reaktor daya generasi II adalah PLTN tipe PWR, CANDU, BWR, AGR dan VVER.

PLTN generasi III

PLTN generasi III adalah reaktor daya generasi lanjut (advanced) yang dikembangkan pada akhir tahun 1990. PLTN generasi ini mengalami perubahan desain evolosioner (perubahan yang tidak radikal) yang bertujuan untuk meningkatkan faktor keselamatan dan ekonomi PLTN. PLTN generasi III banyak dibangun negara-negara Asia Timur. Contoh dari PLTN generasi III adalah ABWR, System80+.
Pengembangan PLTN generasi III terus berlanjut dan bersamaan dengan itu dilakukan perbaikan desain yang evolusioner untuk meningkatkan faktor ekonomi dengan cukup signifikan. Perubahan terhadap PLTN generasi III menghasilkan PLTN generasi III+ yang lebih ekonomis dan segera dapat dibangun dalam waktu dekat tanpa harus menunggu periode R&D yang lama. PLTN generasi III+ menjadi suatu pilihan untuk pembangunan PLTN yang akan dilakukan dari sekarang hingga tahun 2030.

PLTN generasi IV

PLTN generasi IV adalah reaktor daya hasil pengembangan inovatif dari PLTN generasi sebelumnya. PLTN generasi IV terdiri dari enam tipe reaktor daya yang diseleksi dari sekitar 100 buah desain. Kriteria seleksi adalah aspek ekonomi yang tinggi, tingkat keselamatan lanjut, menghasilkan limbah dengan kuantitas yang sangat rendah, dan tahan terhadap aturan NPT.
PLTN generasi IV dirancang tidak hanya berfungsi sebagai instalasi pemasok daya listrik saja, tetapi dapat pula digunakan untuk pemasok energi termal kepada industri proses. Oleh karena itu PLTN generasi IV tidak lagi disebut sebagai PLTN, tetapi disebut sebagai Sistem Energi Nuklir (SEN) atau Nuclear Energy System (NES). Enam tipe dari reaktor daya generasi IV adalah: Very High Temperature Reactor (VHTR), Sodium-cooled Fast Reactor (SFR), Gas-cooled Fast Reactor (GFR), Liquid metal cooled Fast Reactor (LFR), Molten Salt Reactor (MSR), dan SuperCritical Water-cooled Reactor (SCWR).

Generator termoelektrik radioisotop

Artikel utama untuk bagian ini adalah: Generator termoelektrik radioisotop
Generator termoelektrik radioisotop atau radioisotope thermoelectric generator (RTG, RITEG) adalah sebuah generator listrik yang menggunakan sebuah array dari termokopel untuk mengubah panas yang dilepaskan oleh peluruhan bahan radioaktif yang cocok menjadi listrik oleh efek Seebeck.
RTGS telah digunakan sebagai sumber listrik di satelit, pesawat antariksa berawak dan seperti fasilitas remote sebagai serangkaian mercusuar Uni Soviet yang didirikan di dalam Lingkaran Arktik.

Inspection of Cassini spacecraft RTGs before launch



New Horizons in assembly hall

Soviet RTG